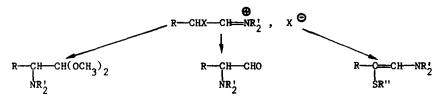
regression d'heterocycle a partir de sels d'iminiums α -halogenes et d'enamines β -halogenees de la serie heterocycliques


L. Duhamel*et J.M. Poirier

Laboratoire de Chimie Organique de la Faculté des Sciences et des Techniques de Rouen
76130 - Mont Saint Aignan, France

(Received in France 28 April 1976; received in UK for publication 7 June 1976)

L'action de la soude sur une énamine β -bromée 3 ou sur son sel d'iminium 2 conduit à une maminocétone 5 avec régression de l'hétérocycle azoté.

Nous avons montré que l'action du méthylate de sodium dans l'alcool méthylique ou de la soude aqueuse sur les sels d'iminiums α -halogénés, conduisait à une migration du groupement aminé avec formation respective d'acétals α -aminés et d'aldéhydes α -aminés (1, 2). Avec les thiols en présence de triéthylamine, par contre, on obtient des β -alkylthio-énamines sans migration du groupement aminé (3)

Des composés identiques sont également obtenus par action des mêmes réactifs sur les énamines β -halogénées correspondantes R—CX—CH—NR; (2, 3).

La migration du groupement aminé, dans le cas de termes hétérocycliques, doit conduire selon les structures, soit à une extension, soit à une régression de la taille de l'hétérocycle. Une extension a été obtenue par TAKEDA et Coll. (4). Nous décrivons dans cet article la régression que nous avons observée à partir des sels d'iminiums α -bromés 2 et des énamines β -bromées 3.

Les sels d'iminiums &-halogénés 2 a et 2 b ont été obtenus par bromation des énamines

1 a et 1 b préparées selon (5). Ils conduisent, par action du méthylate de sodium dans le

méthanol, aux &-aminocétals 4 a et 4 b , et par action de la soude aux &-aminocétones 5 a

et 5 b dont le cycle aminé comporte un chaînon de moins que celui des sels d'iminiums initiaux.

Les composés 4 a, 5 a et 5 b ont été également préparés par action du méthylate de sodium dans le méthanol ou de la soude sur les énamines 3 générées facilement par traitement des sels 2 par la triéthylamine (6).

	R	Méti	hode d'obtention /Rendement % (9)	Eb°C/mmHg	IR*
OCH ₃ C C C C C C C C C C C C C C C C C C C	н	b	45	105/0.05	
	4 a	е	35	105/0,95	
	OCH₃ 4b	b	37	132/1,5	
CH ₃ C F		С	57	115/0,85	1685
	н	H d	51		
	5a	f g	65 48		
	OCH ₃	C f	45 50	152/1,5	1680
	5 b	g			
Br CH ₃	H 3 _a	а	78	**	1620
	OCH3	а	80	**	1610
	3 ь				

- Perkin Elmer 377 et 237, film.
- ** non distillé.

Une voie différente, enfin, nous a permis d'accéder à la cétone 5a:1'hydrolyse en milieu acide d'un sel d'iminium 2 doit conduire au sel d'ammonium 7 d'une cétone α -bromée δ -aminée dont on sait que la cyclisation par substitution nucléophile intramoléculaire de δ -l'halogène δ 0 doit fournir la cétone δ 5, événtuellement par l'intermédiaire de δ 0.

La structure des différents composés a été confirmée par spectrométrie de masse et resonance magnétique nucléaire. Leur pureté contrôlée par chromatographie gazeuse. Enfin, l'aminocétone 5 a a été identifiée par son produit de réduction par LiAlH₄6, constitué de deux aminoalcools diastéréo-isomères obtenus dans des proportions différentes, par action du bromure de phénylmagnésium sur la méthyl-1 formyl-2 pyrrolidine (8).

REFERENCES et NOTES

- (1) P. DUHAMEL, L. DUHAMEL, C. COLLET et A. HAÏDER, C.R.Acad.Sci. 1971, 273C, p. 1461.
- (2) L. DUHAMEL, P. DUHAMEL, C. COLLET, A. HAÏDER, J.M.POIRIER, Tetrahedron Letters 1972,p.4743.
- (3) L. DUHAMEL et J.M. POIRIER, Bull.Soc.Chim. 1975, p.329.
- (4) M. TAKEDA, H. INOUE, M. KONDA, S. SAITO, H. KUGITA, J.Org.Chem. 1972, 37, p. 2677.
- (5) D.A. EVANS, J.Amer.Chem.Soc. 1970, 30, p. 7593.
- (6) P. DUHAMEL, L. DUHAMEL et J.M. POIRIER, C.R.Acad.Sci. 1972, 274C, p. 411.
- (7) S.O. DE SILVA, K. ORITO et R.H. MANSKE, Tetrahedron Letters 1974, p. 3243.
- (8) Jean GRALAK, résultats inédits.
- (9) Modes opératoires :

· · / · · · · · · · · · · · · · · · · ·	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: à 0,01 M de 1 , dans 100 ml d'éther on ajoute, à -60°C, 0,01 M de brome dans 60 ml d'éther. 2 n'a pas été isolé mais utilisé in situ. : à 0,01 M de 2 , on ajoute, à -30°C, 2 g de NEt ₃ . On filtre et élimine le solvant à froid.
b 24	: à 0,01 M de 2 , on ajoute, à -20°C, 35 ml d'une solution 1,5 N de CH ₃ ONa dans CH ₃ OH. On porte à reflux 5 h (on suit l'avancement de
C 2 \longrightarrow 5 d 2 \longrightarrow 7 \longrightarrow 5	la réaction par chromatographie en phase gazeuse), traite à l'eau, extrait à l'éther et distille. : à 0,01 M de 2, on ajoute, à -20°C, 10 ml de NaOH à 10 %. On agite 2 h à température ambiante, extrait à l'éther et purifie 5 par un traitement à HCl dilué (R M N : -N-CH-C=0 & CDCl ₃) : à 0,01 M de 2, on ajoute, à -10°C, 10 ml d'HCl à 10 % et laisse en contact 3 h à température ambiante (I R : solvant CDCl ₃ ;
e $3 \longrightarrow 4$ f $4 \longrightarrow 5$)C=0 = 1675 cm⁻¹). On ajoute à 0°C 5 g de NEt₃, on extrait à l'éther et distille. : on porte à reflux pendant 7 h, 0,01 M de 3 dans 5 g de NEt₃ et 5 ml de CH₃OH. On filtre et distille. : 0,005 M de 4 dans 10 ml d'HCl à 15 % sont agités 2 h à température
$g \rightarrow 5$	ambiante. On alcalinise par NaOH, extrait à l'éther et distille. : on porte à reflux 0,01 M de 3 , 15 ml d'isopropanol, 1 g de

potasse pendant 1 h 1/2. On additionne l'éther, sèche et distille.